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Estimating the Value of an
Early-Warning System

Michael J. Roberts, David Schimmelpfennig,
Michael J. Livingston, and Elizabeth Ashley

An early-warning system generates economic value to the extent that it improves decision
making. The value of the information hinges on the degree to which a timely response,
aided by warnings, facilitates successful damage mitigation. USDA’s Coordinated Frame-
work for Soybean Rust includes a network of sentinel soybean plots and wild kudzu
stands monitored by extension agents for the presence of soybean rust, a potentially recur-
ring threat to the U.S. soybean crop since 2005. The linchpin in this early-warning system
is a website that provides near real-time, county-level information on the location of the
disease. We consider factors that may influence information value.

Information is valuable when it allows decision makers to adjust their actions to
better suit the situation at hand. When information allows many individuals to

improve their decision making, a governmental role in its provision may be justi-
fiable, because individuals may be unable to coordinate and finance its collection
and dissemination. Of course, just because information can embody the public
good attributes of nonrivalry and nonexcludability does not necessarily imply a
role for public policy. One must still consider social costs and benefits.

While cost calculation might be relatively straightforward, valuing information
can be challenging. In this paper, we consider an illustrative example provided
by a recent USDA-led effort to provide real-time information for a new threat to
the U.S. soybean crop, Phakopsora pachyrhizi, a fungus that causes soybean rust
(SBR). SBR, a recurrent problem for soybean producers in much of the southern
hemisphere, was first detected in the United States in 2004, late enough in the
growing season that it posed no threat to that year’s soybean crop. After overwin-
tering in southern states along the Gulf of Mexico, SBR posed a new, uncertain,
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and potentially severe threat to the U.S. soybean crop at the beginning of the 2005
growing season (Skokstad).

The USDA-led framework provides real-time SBR information via a website
(http://www.sbrusa.net) that reports findings from sentinel plots where experts
regularly monitor for soybean rust. Findings are pooled together with weather
forecasts and aerobiological analyses to forecast the likely future spread of the
fungus. The overarching purpose of the framework is to provide farmers with
sufficient notice so they can make appropriate decisions as to the use of preventive
and curative fungicides on their soybean fields.

In the three full years since its first detection in the United States, SBR has
posed little threat to the U.S. soybean crop. Given the expense of developing
the website and its underlying infrastructure, some have questioned whether the
framework was a worthwhile endeavor. After all, if farmers had simply managed
their crops as if there were no SBR threat, they may have fared as well or bet-
ter than they did in the presence of the Coordinated Framework. However, this
view overlooks a key point: although weather conditions have not yet facilitated
dispersion of SBR spores to key soybean-producing regions, this could not have
been known in advance. A potential SBR threat existed at the beginning of the
2005 season, but how farmers might have prepared for that threat in the absence
of the USDA framework is not clear. Indeed, without the framework, individ-
ual farmers may have incurred even greater expense by monitoring their own
fields, perhaps spraying fungicides for a threat that did not exist in their area, or
forgoing planting entirely.1 More generally, this view overlooks the fundamental
notion that information value should be assessed from an ex ante perspective.
Quantifying the ex ante value involves determining the expected value of actions
with and without the benefit of information and subtracting the latter from the
former. This can be challenging because it involves determining decisions that
would have been made without the information, and what the consequences of
those decisions would have been. Perhaps more elusively, it also hinges on what
farmers’ expectations would have been without the USDA framework.

We develop estimates of the ex ante value of information provided by the USDA
framework from the vantage point of the beginning of the 2005 growing season
(Roberts et al.). We show how various factors influence the size of this value, in-
cluding the costs and efficacy of available fungicides, farmers’ prior beliefs about
the likelihood of infection, the perceived accuracy of the framework’s SBR fore-
casts, and farmers’ risk preferences. The value may also depend on how soybean
prices would be affected by SBR-induced production shocks. Our analysis builds
on standard Bayesian decision theory.

Most empirical value-of-information studies consider only the value of perfect
information. In this study, we develop a set of assumptions that allows us to
consider the value of information over a continuum of information qualities.
This is useful in gauging the value of more realistic information systems. It also
facilitates straightforward valuation of marginal improvements in information
quality.

We find the value of information depends on many factors, but most impor-
tantly farmers’ prior beliefs about SBR risk at the beginning of the growing sea-
son and the accuracy of the system’s forecast. These factors cannot be quantified
precisely, so we consider information values over a range of assumptions about
prior beliefs, forecast accuracy, and other factors. Even if forecasts are imprecise,
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resolving only 20% of SBR infection uncertainty for all fields planted with soy-
beans, the system’s value in 2005 was an estimated $11 million. If forecasts re-
solved 80% of infection uncertainty, the estimated value was $395 million. Our
analysis suggests that the value of the information in 2005 likely exceeded costs
of developing the information, reported to be between $2.5 and almost $5 million.

Three additional factors affect estimated information values: anticipated price
shocks in the event of a large rust outbreak, soybean farmers’ aversion to risk,
and heterogeneity of farmers’ prior beliefs of an infestation. We find that all of
these factors tend to reduce the largest estimated values and increase the smallest
estimated values, but the effects are relatively small in magnitude. The potential
benefits of the framework suggest that similar programs for other crop pests can
be cost effective if, as in the case of soybean rust, preventive action can strongly
mitigate damages in the event of an outbreak.

Bayesian Updating with Information Accuracy
In this section, we review Bayesian decision theory (Hirschleifer and Riley;

Schimmelpfennig and Norton) and use it to develop a simple model to value
information provided by the USDA-led framework about impending SBR infec-
tions. We also develop a set of simplifying assumptions to derive a scalar index
of information accuracy (Lawrence).

We begin by characterizing the problem in terms of a payoff matrix that maps
a finite set of possible farmer actions x ∈ {x1, x2, . . . , xX} and a finite set of mutu-
ally exclusive states s ∈ {s1, s2, . . . , sS} to an X × S matrix of possible outcomes,
the elements of which are denoted by px,s. The unconditional probability that
any given state s will occur is �s. These probabilities are subjective: they per-
tain to a farmer’s beliefs about the chances that each state will occur, and we
assume these beliefs are consistent with the laws of probability (all �s ≥ 0 and
�s�s = 1).

An information signal is modeled as a random variable M, which might realize
outcomes such as mL, signaling “low risk of infestation,” or mH, signaling a “high
risk of infestation.” In general, there may be any number of possible messages. The
message is valuable if it arrives before the farmer chooses an action and causes the
farmer to change beliefs about the probability that states s will occur. The posterior
probability, the probability of s given M (�sM), is linked to the prior probability
(�s) using Bayes rule

�s, M = Pr[s | M] = �s
Pr[M | s]

Pr[M]
.(1)

The quality of the information signal depends on the magnitude of the differ-
ence between �sM and �s. A perfect information signal would cause a complete
resolution of uncertainty, so that if the state s∗ ultimately arises, �s∗M = 1 and
�−s∗M = 0. Thus, for perfect information, the number of possible outcomes from
the message M must equal the number of possible states S, and the distribution
of M must be identical to the distribution defined by the probabilities �s. That is,
Pr[M = s] = �s and Pr[s = M | M] = 1. For example, if there are two states of the
world, “infestation” and “no infestation,” then analogous messages that forecast
“impending infestation” or “no impending infestation” would occur with the
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same frequency as infestations themselves (Pr[M = s] = �s), and the messages
would always be correct (Pr[s = M | M] = 1).

The more realistic and interesting case is when information is imperfect. In
general, the number of possible messages may be greater than, less than or equal
to the number of possible states, and both the conditional and unconditional
probability distributions of messages can take many forms. One way to simplify
the issue is to assume the message is a forecast that predicts which state will
occur, and that the unconditional probability distribution of messages equals the
probability distribution of states. Hence, as in the case of perfect information,
Pr[M = s] = �s. We therefore define the unconditional probability density function
of M using the same notation as the states, e.g., �M. Unlike the case of perfect
information, however, Pr[s = M | M] < 1; that is, it is anticipated that the forecast
may be inaccurate. From Bayes rule, we can see that in this special case

�s M = Pr[s | M] = Pr[M | s] = Pr[M ∩ s]
�s

.(2)

By simplifying the problem in this way, we can model information quality using
a single index of message accuracy � ∈ (0, 1), where information quality tends to
zero as � tends to 0 and information quality tends to perfect accuracy as � tends
to 1. We do this by setting

Pr[M ∩ s] = �s�M + �(1 − �s�M).(3)

This expression implies that M and s are independent when � = 0 (the mes-
sage contains no information) and perfectly correlated (Pr[M ∩ s] = �s) when
� = 1 (perfect information). The expression in (3) is simply a linear interpola-
tion between these two extremes. Under this set of assumptions, the posterior
distribution is linked to the prior distribution by

�s M = �s�M + �(1 − �s�M)
�s

.(4)

The value of information depends on the effect the message has on the decisions
farmers make. Without a message, farmers maximize expected profit given their
prior beliefs, �s. We denote these actions by x∗. With information, farmers choose
their actions to maximize expected profits conditional on the message M. We
denote these actions by x∗ | M. Payoffs are given by the combination of the state
that occurs and action chosen and denoted pxs. Taking expectations, the ex ante
value of information given by message M is therefore

VOI =
∑

M

∑

s

�s M psx∗ | M −
∑

s

�s psx∗ .(5)

Estimating the Value of the SBR Monitoring Framework
To estimate the value of the SBR monitoring framework we must delineate farm-

ers’ possible management strategies (actions) and possible payoffs. We assume
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Figure 1. Decision tree without information about soybean rust
infection
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Notes: Square boxes indicate farmers’ decisions and the circles represent nature’s random decision
whether or not to infest. The payoffs (1–6) are described in table 1.

Table 1. Possible outcomes stemming from P. pachyrhizi threat

Management Strategy Infection No Infection

Apply preventive treatment 1 2
1% yield loss, cost of $25.63/acre Cost of $25.63/acre

Monitor fields and apply 3 4
curative treatment if SBR 7% yield loss, cost of $20.52/acre Cost of $6.71/acre

No rust management 5 6
25% yield loss Base return

Source: Johansson et al.

three management strategies: (a) apply a preventive fungicide before soybean rust
occurs; (b) intensively monitor fields and apply a curative fungicide if soybean
rust is detected; or (c) do nothing. The payoffs and profit-maximizing strategies
depend on the costs of preventive and curative fungicides, monitoring costs,
expected yield losses in the event of an infection, soybean prices, and farmers’
perceptions of the probability that infection will occur. The decision tree in figure 1
shows how the three strategies, crossed with two possible states (infestation and
no infestation), lead to six possible payoffs, which are summarized in table 1.2

The costs in this table are treatment cost, not the cost of the yield loss.
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Figure 2. Decision tree with partial information about soybean rust
infection
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Notes: Square boxes indicate farmers’ decisions and the circles represent nature’s random decisions
about the information signal and whether or not to infest. The payoffs (1–6) are described in table 1.

Figure 2 illustrates the decision tree for an environment with an imperfect
information signal. In this environment, management decisions are made after
receiving an information signal, M, which changes farmers’ beliefs about infec-
tion from the prior, � to posterior �H or �L, depending on whether it is a “high-”
or “low-risk” signal. The accuracy of the signal, �, ranges continuously between
0 and 1: the higher is �, the more the signal changes farmers’ beliefs. If infor-
mation quality were perfect, we would expect only two signals, one perfectly
forecasting an impending arrival of SBR and one perfectly forecasting the nonar-
rival of SBR—that is, �H would equal 1 and �L would equal zero. To approx-
imate a continuum of information qualities, we suppose there remain just two
signals, but that the signal itself may have different levels of accuracy. If neither
of the two signals contained informational content, they would not alter farmers’
priors (� = �H = �L), and farmers would choose the same management strat-
egy in the partial information environment as they would in the no-information
environment.

Because we do not have objective estimates for information accuracy, we eval-
uate farmers’ optimal conditional strategies and expected profits over a range of
accuracies: � = 0.2 (low), � = 0.5 (medium), and � = 0.8 (high). One may think of
these information qualities as the proportion of uncertainty resolved by the partial
information. We then calculate farmers’ overall expected profits by multiplying
conditional expected profits by the probability of each signal and summing them,
as per equation (5).
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Quantifying Payoffs and Probabilities

Soybean Yield Impacts
Fungicide efficacy trials from Brazil and Paraguay in 2001–2003, aggregate

yield data for 10 Brazilian states during 1993–2002, and data on the introduc-
tion of P. pachyrhizi into those states were used to estimate rust-free yields and
treated and untreated yield impacts (Livingston et al.). Rust-free yields aver-
aged 2.604 (±0.422) metric tons per hectare, and treated and untreated yields
averaged 2.578 (±0.201) and 2.025 (±0.363) metric tons per hectare. Estimated
treated and untreated yields were therefore lower by an average 4.3% (±5.2%) and
25.0% (±11.9%), respectively, than estimated rust-free yields.

We use the untreated yield impacts to estimate payoffs when rust occurs but
no fungicide is applied. Because the treated yield impacts were estimated with
yield data reported from soybean plots sprayed with curative, preventive, or
curative plus preventive fungicides, we must separate impacts of the different
kinds of treatments. Replicating the methods in Johansson et al., we find that the
average yield impact for the preventive class of fungicides is −0.97%. The average
yield impact for the curative class of fungicides is −6.95% with a mean of 1.39
applications evaluated (see table 2 and Livingston et al.).3

Prior Infection Probabilities
We develop regional proxies for prior probabilities of SBR infestations using

data on wheat stem rust, a disease that spreads through the air much like SBR.
Stem rust epidemics of wheat for 1921–62 (Hamilton and Stakman) are used to
estimate how often P. pachyrhizi spores may be present in most states where soy-
beans are produced (U.S. Department of Agriculture, 2005). We also use data
on daily temperature extremes, rainfall, and humidity for 1992–2001 to estimate
the proportion of years in which conditions may favor the development of soy-
bean rust in each state (Livingston et al.). P. pachyrhizi may be able to overwinter
along the coastlines of Alabama, Florida, Georgia, Louisiana, Mississippi, and
Texas (Pivonia and Yang); therefore, we assume that climatic conditions will fa-
vor introduction of soybean rust in all years for these states. In addition, because
P. pachyrhizi is an obligate parasite that can not live without a host plant, we use
data on the most likely soybean planting and harvesting dates for each state (U.S.
Department of Agriculture, 1997) to estimate how often climatic conditions and
host availability may favor rust epidemics.

To estimate state-level prior probabilities for rust infections, we use the product
of the proportion of years that stem rust epidemics actually occurred and the pro-
portion of years that climates favored the spread of rust. This assumes climatic
conditions affecting the dispersal of spores and those affecting the broader estab-
lishment of rust in an area are independent (Hamilton and Stakman). To convert
state-level prior probabilities to regional probabilities, we weight states by aver-
age 1995–2004 soybean production (U.S. Department of Agriculture, 1998–2005).
Over all U.S. soybean acres, these calculations imply an average prior probability
of rust infection equal to 0.53. Across regions, the priors are 0.67, 0.55, 0.55, 0.49,
0.62, 0.43, 0.76, and 0.51 for Appalachia, Corn Belt, Delta, Lake States, North-
east, Northern Plains, Southeast, and the Southern Plains, respectively.4 These
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Table 2. Yields with preventive and curative fungicides

Rust-Free Efficacy Preventive Curative
Yield Estimate Trial Yield Yield Treatments Yield Treatments
(Tons/Acres) (Tons/Acres) Impact (%) (Number) Impact (%) (Number) Source

2.223 1.914 −14 2 a
2.223 1.765 −21 2
2.223 1.776 −20 2

2.549 2.149 −16 2 b
2.549 2.190 −14 2
2.549 2.090 −18 2
2.549 1.832 −28 2

2.549 2.767 9 1 c
2.549 2.946 16 1
2.549 2.548 0% 1
2.549 2.712 6% 1

2.549 2.926 15 1 d

3.359 3.969 18% 1 e
3.359 3.641 8% 1
3.359 3.813 14% 1
3.359 3.531 5 1
3.359 3.656 9 1
3.359 3.313 −1% 1
3.359 3.375 0% 1
3.359 2.938 −13% 1
3.359 2.984 −11% 1
3.359 2.703 −20 1
3.359 3.313 −1 1
3.359 3.250 −3% 1
3.359 3.328 −1% 1
3.359 2.984 −11 1
3.359 3.203 −5 1

2.750 2.469 −10% 1 f
2.750 2.516 −9% 1
2.750 2.406 −13% 1
2.750 2.578 −6 1
2.750 2.625 −5 1

2.686 2.568 −0.97% 1.00 −6.95 1.39 Mean

Source: (a) Bayer (2003a) (Trials 1 and 2). Lower bound of rust-free yield estimate for Mato Grasso
do Sul 2001–02. (b) Bayer (2003b) (Trial 14). The estimate for rust-free yield in Minas Gerais 2002–03.
(c) Bayer (2003b) (Trial 15). The estimate for rust-free yield in Minas Gerais 2002–03. (d) Bayer
(2003b) (Trial 16). The estimate for rust-free yield in Minas Gerais 2002–03. (e) BASF (2003) (Jesus,
Paraguay). The upper bound of the rust-free yield estimate for Parana 2002–03. (f) BASF (2003)
(Pirapo, Paraguay). The estimate for rust-free yield in Mato Grasso do Sul 2002–03.
Note: Blank fields indicate no data: Each study considers either preventive or curative fungicide
treatments.

probabilities are used to estimate information values in the base case (table 3) and
other scenarios.

Our rather high estimated priors may appear inconsistent with the actual U.S.
SBR experience after 2005 since SBR has not yet posed a serious threat to the
overall U.S. soybean crop. It is possible, however, that our estimated infestation
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rates continue to be reasonable, even after 2005 when U.S. farmers had not any
firsthand experience with SBR. Some support for this view stems from the fact
that, even following a benign year in 2005, survey data indicate many farmers
remained concerned about possible SBR infection in 2006. For example, while
over 50% thought it was “very unlikely” that their fields would be infested, and
22% thought it “somewhat unlikely;” there were still 6% and 3% of farmers who
respectively thought infestation was “somewhat” and “very likely” in their fields.
Seventeen percent were uncertain whether their fields would be infested or not.
This means over a quarter of surveyed soybean farmers thought that infestation
was more likely than not, or were uncertain. While we cannot discern precise
probabilistic priors from qualitative survey responses, these data do indicate that
farmers perceived significant infestation risk in 2006. Thus, it is plausible that
beliefs were just somewhat more pessimistic a year earlier in 2005.

In 2006–2008, the actual incidence of SBR steadily increased. Plant pathologists
now believe it will take a number of years for P. pachyrhizi spores to build up
to natural equilibrium levels.5 Thus, individual-season prior infection beliefs are
likely rising again after an initial fall after the 2005 season.

Given the difficulty of determining prior beliefs of infection and the funda-
mentally subjective nature of those beliefs, we supplement our base-case prior
probabilities with a sensitivity analysis that varies prior infection probabilities
from 10% to 120% of our base-case estimates. We also look more closely at the
soybean-rich Corn Belt, considering for that region a continuum of prior beliefs
that ranges from zero to one.

Base Case Results
The value of information is the difference in expected profits between the

partial-information environment (figure 2) and the no-information environment
(figure 1). Results reported in table 3 indicate that the value of information varies
between zero and $6.01 per U.S. soybean acre, depending on information quality
and assuming prior infestation beliefs equal our estimated infestation probabili-
ties. In table 4, we report information values for a whole range of priors, scaled as
a percent of our estimated priors. A striking result of this sensitivity analysis is the
extreme nonlinearity of the information value with respect to the prior infestation
probabilities.

To further characterize the nonlinear relationship between information value
and prior infestation beliefs, we focus on the Corn Belt region, which has the
nation’s largest share of soybean production. For this region, we examine the
full range of possible priors (figure 3). Values for all three information qualities
peak at prior infection probabilities of � = 0.19 and 0.63. These probabilities mark
switching points in farmers’ optimal strategies. Below a 19% chance of infection,
the best strategy is to do nothing; between a 19% and 63% chance of infection,
the best strategy is monitoring and application of curative fungicides if infected;
above a 63% chance of infection, the best strategy is to use preventive fungicides.
For a given quality of information, values are highest near these switching points,
because information has the greatest scope for altering farmers’ decisions and re-
ducing the chance of ex post errors. Of course, the better the quality of information,
the more ex post errors are reduced, creating greater value. When information is
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Figure 3. Possible information values in the Corn Belt

Table 5. Aggregate information values for the United States

Information Quality

Low Medium High
(� = 0.2) (� = 0.5) (� = 0.8)

Scenario (in Dollars) (in Dollars) (in Dollars)

Base case
U.S. total 11,247,380 132,925,747 395,277,121
Average per acre 0.16 1.84 5.46

Risk aversion
U.S. total 16,880,465 136,418,926 391,344,966
Average per acre 0.23 1.88 5.41

Price feedback
U.S. total 28,773,280 130,259,030 376,391,350
Average per acre 0.40 1.80 5.20

Heterogeneous beliefs
U.S. total 16,777,090 102,300,370 275,889,857
Average per acre 0.23 1.41 3.81

of low quality (� = 0.2), there are some priors for which the information provided
will not cause farmers to change their management behavior, thus producing no
value at all.

Using estimated probabilities of infection for prior beliefs in each region and
aggregating on a per-acre basis across all regions, we estimate in table 5 that
the aggregate value of information ranges between $11 million and $395 mil-
lion, depending on information quality. In the next section, we show how these
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information values were determined under the assumptions that farmers are
strongly risk averse, that soybean prices are influenced by soybean-rust-induced
yield losses, and farmers’ prior beliefs are heterogeneous within each region. As
can be seen in table 5, these scenarios all increase the lowest information val-
ues and reduce the highest values in comparison to the base case. Despite the
broad range of information values estimated, all far exceed the program’s esti-
mated cost in the first year, which ranged between $2.5 million and $5.0 million
(U.S. Department of Agriculture, 2005).6 Because the value increases between
$2 million and $3 million for each percentage point of uncertainty resolved by the
framework, efforts to improve timeliness and accuracy of infection forecasts may
well be cost-effective.

Alternative Scenarios
In the base case scenario described in the preceding section, we evaluate farm-

ers’ expected-profit-maximizing management decisions with and without infor-
mation and estimate the value of information as the difference in expected profits
between the two environments. In the following scenarios, the concept is similar
but some assumptions are changed or relaxed in order to explore the sensitivity
of the base-case estimates to these assumptions.

Alternative Scenario 1: Information Values of Risk-Averse Farmers
We first consider how our results change if farmers are strongly risk averse.

More specifically, we assume farmers’ preferences can be characterized by con-
stant relative risk aversion (CRRA), with a coefficient of relative risk aversion
equal to 4. This may be expressed with the utility function: u(W) = −AW−3/3,
where W indicates wealth, and A is an arbitrary constant. We made this assump-
tion to throw into stark relief the effect of risk aversion on information values.

Using data from USDA’s 2003 Agricultural Resource Management Survey, we
estimate base wealth for each region by weighting farm households’ net worth
by their number of soybean acres. We find that wealth varies considerably across
farm sizes and across the country, with the average soybean acre being associ-
ated with a household net worth of $1,649,807 in Appalachia and $1,348,667 in
the Corn Belt, but only $918,870 in Delta states. Average net worth is $1,430,615
in Lake States, $1,030,815 in the Northeast, $1,389,427 in the Northern Plains,
$1,300,438 in the Southeast, and $1,572,391 in the Southern Plains. Net worth for
the average soybean acre of farms outside these regions is $915,964. Calculating
information values for risk-averse farmers’ proceeds similarly to the base case
described earlier, except that farmers are assumed to maximize expected utility
rather than expected profits.

In only a few cases does the extreme level of risk aversion cause farmers’ deci-
sions to differ from the base case. This assumption changes information values,
however, mainly because different information environments may lead to large
differences in profit variability. For example, consider a farmer who would have
applied the preventive strategy without information. Suppose that if armed with
a high-quality forecast, the farmer chooses prevention in response to a “high-
risk” signal and does nothing in response to “low risk.” The information would
cause her average profits to increase but would also cause her profit variability to
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increase, so the information would be valued less by this farmer than by another
who is less risk-averse. When the information signal is of poorer quality, informa-
tion may increase or decrease the amount of risk, so the information value may
be relatively greater or smaller than in the risk-neutral base case.

Table 6 reports results from the analysis of risk-averse farmers. Differences from
the base-case scenario are generally modest and vary somewhat across regions
and information qualities. In the Corn Belt, for example, a strongly risk-averse
farmer values low-quality information at $0.37 per acre versus the base-case value
of $0.22. Alternatively, the same risk-averse farmer values high-quality informa-
tion at $5.96 per acre, which is slightly less than the value of $6.01 in the base case.
More realistic assumptions about the level of risk aversion would imply smaller
differences from the base case.7 U.S. aggregate information values (see table 5)
range from almost $17 million (low quality) to over $391 million (high quality).

Alternative Scenario 2: Price Feedback Effects
The base case scenario assumed soybean prices were fixed at the May 2, 2005,

futures price. However, both economic theory and historical evidence indicate
that soybean prices vary with yield, and because each decision (prevent, moni-
tor/cure, or no management) and each outcome (rust infection or no rust infection)
leads to different yields, we consider the additional possibility that postharvest
soybean prices are endogenous. Table 7 presents information values similar to
those in table 3, except infestations and farm management decisions are assumed
to influence market prices for soybeans.

Equilibrium soybean price is determined as follows: individual farmers, taking
expected postharvest price as given, maximize their own profits, while the indus-
try as a whole, which is made up of these individual profit-maximizing farmers,
satisfies one of the equations below. In these equilibrium equations, the May 2
futures price equals the average of all potential end-of-season soybean prices,
weighted by the market-perceived probabilities that these prices will be realized.
In the case where no information is available, this means:

Prob(RUST infection) × (Post-harvest price w/RUST infection)

+ Prob(no infection) × (Post-harvest price w/o infection) = Futures price.

(6)

With partial information, this condition becomes:

Prob(infection and “high risk” signal)

× (Post-harvest price w/infection and “high risk” signal)

+ Prob(infection and “low risk” signal)

× (Post-harvest price w/infection and “low risk” signal)
+ Prob(no infection) × (Post-harvest price w/o infection) = Futures price.

(7)

The above conditions are only correct if the geography of the soybean market
coincides with that of the SBR infection and message probabilities. Given the wide
variation in climate conditions across the United States and the global nature of
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the soybean market, this is unrealistic. Allowing probabilities to vary by location,
however, quickly renders the price equilibrium condition intractable. Even with
the simplifying assumption that infection and message probabilities are homoge-
neous within each of the eight major soybean-producing regions,8 the number of
terms on the left-hand side of the partial information equilibrium equation climbs
to 6,561. After all, there are three yield-determining outcomes (“high risk” mes-
sage with infection, “low risk” message with infection, and no infection) possible
in each region, producing 38 characterizations for the nation as a whole.

Though we do not explicitly model the regional interconnectedness that pro-
duces this host of outcomes, we allow for such effects by not including alternate
location yield shocks as explanatory variables in our regressions of postharvest
soybean price on regional yields (there are eight regressions—one for each region).
Thus, our coefficient estimates will capture not only the effect of a specific region’s
yield on postharvest soybean price but also the effects of other yield shocks that
are correlated with the region’s own yield shocks (presumably those occurring
in locations close in distance and weather). While these estimates provide some
insight into how regional soybean prices and yields have been spatially correlated
historically, there is no guarantee soybean rust will exhibit similar spatial effects
as the weather and production shocks of the past decades. If, for example, soy-
bean rust were to spread quickly over the entire soybean-producing part of North
America, a rust-induced regional price increase would likely be greater than the
increase resulting from yield loss caused by a more localized drought.

Our first step is to aggregate, using production-weighted averages, state-level
data (U.S. Department of Agriculture 1950–2004) to the regional level. Next, in
order to abstract from yearly variations in output while still accounting for pro-
ductivity increases over time, we fit a smooth trend curve for yields in all nine
soybean production regions. Examples of these trends for the Corn Belt and South-
east are given in figure 4.

Figure 4. Yield trends and shocks in the Corn Belt and Southeast
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This fitting process allows us to calculate, for each region in each year, a percent-
age residual yield (i.e., the difference between actual yield and yield predicted
by the trend, divided by the yield predicted by the trend). We approximate the
percentage change in regional soybean prices by calculating the year-to-year dif-
ference in the natural logarithm of the real price. By regressing this value on the
percentage residual yield, we obtain an estimate of the percentage change in price
that would result from a percentage deviation from the yield trend.9, 10

In computing the results in table 7, we first find the equilibria11 in which all
farmers within a region make identical management decisions. In just two cases,
such equilibria do not exist: the Northern Plains with an information quality of
0.5 and the Southern Plains with an information quality of 0.2. For these regions,
we consider equilibria where farmers apply one strategy to a share of acreage
within a region and apply another strategy to the remainder. In these two cases,
in equilibrium, farmers are indifferent between monitoring and no-management
strategies when they receive the low-risk signal. An equilibrium results in the
Northern Plains scenario when, in response to a low-risk signal, about 35% of
acreage is monitored, the remainder is unmanaged, and the postharvest price,
when the signal indicates low risk but infection occurs anyway, is $6.91. Similarly,
the Southern Plains is in equilibrium when, in the face of low risk, about 27% of
acreage is monitored; 73% is unmanaged; and the postharvest price, when the
signal indicates a low risk-signal but infection occurs anyway, is $6.45.

For most regions, accounting for price effects has a small influence on informa-
tion values. The effect is somewhat greater in the Corn Belt and Northern Plains

Figure 5. Density of farmers’ heterogeneous prior beliefs in the Corn
Belt



324 Review of Agricultural Economics

T
ab

le
8.

In
fo

rm
at

io
n

va
lu

es
w

it
h

h
et

er
og

en
eo

u
s

p
ri

or
b

el
ie

fs

A
ve

ra
ge

A
ve

ra
ge

A
ve

ra
ge

P
ri

or
“a

lp
h

a”
“b

et
a”

V
al

u
e

of
V

al
u

e
of

B
el

ie
f

of
P

ar
am

et
er

P
ar

am
et

er
N

o
In

fo
E

V
N

o
In

fo
rm

at
io

n
In

fo
P

er
In

fo
P

er
In

fe
ct

io
n

fo
r

B
et

a
fo

r
B

et
a

D
ec

is
io

n
In

fo
Q

u
al

it
y

(�
)

Fa
rm

A
cr

e
R

eg
io

n
(P

ro
b

ab
il

it
y)

P
ri

or
P

ri
or

(P
,M

,o
r

N
)

(D
ol

la
rs

)
(S

ca
le

0
to

1)
(D

ol
la

rs
)

(D
ol

la
rs

)

A
pp

al
ac

hi
a

0.
67

2.
00

1.
00

M
78

,6
44

0.
2

23
9

0.
21

0.
67

2.
00

1.
00

M
78

,6
44

0.
5

1,
46

5
1.

31
0.

67
2.

00
1.

00
M

78
,6

44
0.

8
3,

95
7

3.
54

C
or

n
B

el
t

0.
55

1.
20

1.
00

M
93

,7
07

0.
2

18
2

0.
25

0.
55

1.
20

1.
00

M
93

,7
07

0.
5

1,
13

2
1.

53
0.

55
1.

20
1.

00
M

93
,7

07
0.

8
3,

00
1

4.
04

D
el

ta
0.

55
1.

20
1.

00
M

97
,9

63
0.

2
39

1
0.

20
0.

55
1.

20
1.

00
M

97
,9

63
0.

5
2,

36
0

1.
21

0.
55

1.
20

1.
00

M
97

,9
63

0.
8

6,
50

4
3.

33
L

ak
e

St
at

es
0.

49
0.

95
1.

00
M

58
,5

73
0.

2
13

7
0.

26
0.

49
0.

95
1.

00
M

58
,5

73
0.

5
80

1
1.

50
0.

49
0.

95
1.

00
M

58
,5

73
0.

8
2,

18
5

4.
09

N
or

th
ea

st
0.

62
1.

60
1.

00
M

42
,1

09
0.

2
10

7
0.

23
0.

62
1.

60
1.

00
M

42
,1

09
0.

5
66

0
1.

39
0.

62
1.

60
1.

00
M

42
,1

09
0.

8
1,

79
3

3.
79

C
on

ti
nu

ed



Estimating the Value of an Early-Warning System 325

T
ab

le
8.

C
on

ti
n

u
ed

A
ve

ra
ge

A
ve

ra
ge

A
ve

ra
ge

P
ri

or
“a

lp
h

a”
“b

et
a”

V
al

u
e

of
V

al
u

e
of

B
el

ie
f

of
P

ar
am

et
er

P
ar

am
et

er
N

o
In

fo
E

V
N

o
In

fo
rm

at
io

n
In

fo
P

er
In

fo
P

er
In

fe
ct

io
n

fo
r

B
et

a
fo

r
B

et
a

D
ec

is
io

n
In

fo
Q

u
al

it
y

(�
)

Fa
rm

A
cr

e
R

eg
io

n
(P

ro
b

ab
il

it
y)

P
ri

or
P

ri
or

(P
,M

,o
r

N
)

(D
ol

la
rs

)
(S

ca
le

0
to

1)
(D

ol
la

rs
)

(D
ol

la
rs

)

N
or

th
er

n
Pl

ai
ns

0.
43

0.
75

1.
00

M
70

,6
88

0.
2

17
9

0.
20

0.
43

0.
75

1.
00

M
70

,6
88

0.
5

1,
07

7
1.

22
0.

43
0.

75
1.

00
M

70
,6

88
0.

8
3,

00
9

3.
42

So
ut

he
as

t
0.

76
3.

20
1.

00
M

2,
40

8
0.

2
81

0.
18

0.
76

3.
20

1.
00

M
2,

40
8

0.
5

45
0

1.
01

0.
76

3.
20

1.
00

M
2,

40
8

0.
8

1,
11

1
2.

51
So

ut
he

rn
Pl

ai
ns

0.
51

1.
05

1.
00

M
24

,9
73

0.
2

24
3

0.
16

0.
51

1.
05

1.
00

M
24

,9
73

0.
5

1,
46

5
0.

96
0.

51
1.

05
1.

00
M

24
,9

73
0.

8
3,

73
4

2.
45

O
th

er
0.

53
1.

13
1.

00
M

69
,1

59
0.

2
23

4
0.

21
0.

53
1.

13
1.

00
M

69
,1

59
0.

5
1,

39
6

1.
27

0.
53

1.
13

1.
00

M
69

,1
59

0.
8

3,
84

6
3.

51

N
ot

es
:

In
th

e
d

ec
is

io
n

co
lu

m
n,

M
is

m
on

it
or

/
cu

re
.

In
ot

he
r

co
lu

m
n

he
ad

in
gs

,
E

V
is

ex
pe

ct
ed

va
lu

e,
an

d
“a

lp
ha

”
an

d
“b

et
a”

pa
ra

m
et

er
s

ar
e

th
os

e
in

th
e

be
ta

pr
ob

ab
ili

ty
d

is
tr

ib
ut

io
n.



326 Review of Agricultural Economics

because yield shocks in these soybean-intensive regions have larger estimated
price effects. In the Corn Belt, for example, the value of information increases
from the table 3 amount of $0.22 per acre to $0.70 per acre when it is of low quality
and declines from $6.01 to $5.75 when it is of high quality. In the Southeast, where
the estimated price effects are far smaller, the values of both low- and high-quality
information are unchanged at zero and $3.48 per acre, respectively.

When we account for price feedback effects, small changes in expected yield
lead to small changes in expected price (i.e., the futures price). If information
causes an increase in expected yield, expected prices tend to decline. If the ex-
pected price decline is large enough, farmers’ total expected profits might de-
cline because of the information, even though individual farmers find the infor-
mation valuable (because individual farmers take prices as given). For soybean
consumers, however, this price decline is a gain—it represents a transfer from
producers to consumers. Of course, the opposite is true if the information causes
a decline in expected yield: prices increase, and consumers experience a welfare
loss because of the information’s existence

Alternative Scenario 3: Average Information Values for Farms
with Heterogeneous Beliefs

A third departure from the base case results comes from changing our assump-
tions about farmers’ prior beliefs. Whereas in the base case we assume all farmers
within a region hold the same prior beliefs about the probability of infection, in
this scenario we assume farmers have heterogeneous prior beliefs. Specifically,
we assume beliefs within a region are distributed according to a beta distribution
with the beta parameter equal to one and the alpha parameter set so that the mean
equals the prior probability of infection in the base case (table 3). This assumption
implies that farmers’ beliefs vary widely within each region.

The assumed distribution for the Corn Belt is plotted in figure 5. The height of
the density curve shows the relative proportion of farmers assumed to have the
prior belief plotted along the horizontal axis. We estimate average information
values for each region and information quality by taking 1,000 random draws from
the assumed beta distribution, using each draw as the value for P, calculating the
associated information values from each draw, and then taking the average of the
information values across all 1,000 draws (table 8).

In general, heterogeneous prior beliefs tend to reduce the highest information
values and increase the lowest ones. The highest values decline because they
are associated with the highest-value prior beliefs—those near the critical prob-
abilities that mark the switching points between strategies. With heterogeneous
beliefs, these high-value prior beliefs are averaged with lower value prior beliefs,
bringing down the overall average. Conversely, the lowest value prior beliefs are
averaged with higher value prior beliefs, which bring those information values
up.

Conclusion
The value of disease information to farmers depends on many factors, but par-

ticularly their perceived risk of being infected with SBR at the beginning of the
season and the accuracy of forecasts provided by the program. Over a broad range
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of plausible parameters, the value of information provided by the SBR Coordi-
nated Framework could have been substantial even though the disease did not
spread to the major soybean growing regions in the Midwest. If the forecasts were
poor, resolving only 20% of SBR infection uncertainty for all fields planted with
soybeans, the estimated value of the program was $11 million during the first year.
If the forecasts resolved 80% of infestation uncertainty, the estimated value was
$395 million. The estimated value is also sensitive to prior beliefs about the likeli-
hood of infestation. Unlike forecast accuracy, however, the relationship between
information value and prior beliefs is highly nonlinear. While some alternative
prior beliefs would lead to lower information values as compared to our baseline,
others give much higher values.

The sensitivity of information value to the extent of resolved uncertainty sug-
gests that the potential value of information will be greatest for pest problems
that can be forecasted accurately, that farmers have little experience with, and
that have large potential impacts on crop production that can be mitigated using
preventive management activities (Carlson). Other key drivers of the total value
of information are the size and value of the crop in question. For instance, the near
tripling of soybean commodity prices since 2005 would imply a near tripling of
our estimated value of SBR forecasts, holding all else the same.

Two other more subtle features affect estimated information values: anticipated
price shocks in the event of large SBR outbreaks and the risk aversion of soybean
farmers. We find that both of these effects reduce the largest estimated values and
increase the smallest ones, but the magnitudes of these effects are modest.

By examining the value of information across a range of forecast accuracies, we
have illustrated the value of marginally improving information quality. Since the
marginal information value appears large in the case of SBR, in future work it may
be worthwhile to consider models that explicitly incorporate features of the infor-
mation collection system. In the SBR framework, information quality is linked to
the number of sentinel plots used for monitoring, where the plots are located spa-
tially, and how frequently the sentinel plots are monitored. It would be interesting
to consider the optimal mix of these policy choices. While such a model would be
extremely complex, the potential social gains from its construction would seem
to warrant the effort.

Such a model would need to capture the spatial and dynamic patterns of infes-
tations. Our discrete two-period timing of information flows and decision making
and the way we deal with spatial dependencies are crude relative to the continu-
ous and spatially dependent processes that exist in reality. In a more sophisticated
model, prior beliefs would be determined at different points in time for differ-
ent farmers, since the timing of the growing season varies geographically. Even
without the monitoring framework, many farmers would have had more infor-
mation thantheir beginning-of-the-season prior beliefs, say from weather reports
and news about infections further south. Thus, the relevant decision-time prior is
itself uncertain at the beginning of the season. Because we found information to
be valuable across many priors, integrating over these priors would likely lead to
information values not drastically different from the ones we have estimated. A
more sophisticated model, however, would provide insight into the appropriate
structure of information systems—where and how frequently monitoring would
be most valuable.
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A more sophisticated model may also be able to account for the externalities
associated with farmers’ pest management choices. Each farmer’s monitoring
and fungicide application decisions affect the likelihood that his or her neighbors
will be infected. This physical externality embodies another market failure that
sits alongside the public information problem. While the optimal policy solution
would likely involve separate tools for each problem, in practice, solving one
problem may either mitigate or exacerbate the other.
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Endnotes
1In this case study, we do not consider farmers’ planting decisions, only their fungicide application

decisions, provided they do plant. By ignoring this decision, we underestimate the value of information
provided by the framework.

2Costs and yield losses reported in table 1 are estimates. Yield data, before and after the arrival of P.
pachyrhizi are not available for the United States, nor are efficacy trial data for U.S. fungicides. Efficacy
data also were not available at the time of this study for climatic regions similar to the United States.
Thus, to estimate treated and untreated yield impacts of soybean rust epidemics relative to rust-free
yields, we evaluated impacts of rust on soybean yields in South America. Details are provided in an
online supplement to Roberts et al.

3Poorly timed sprays could lead to the need for additional applications (Dorrance, Draper, and
Hershman). We do not attempt to quantify the value of improved timing, which would likely increase
the presented estimates for the value of information.

4The regions contain the following states: Appalachia (KY, NC, TN, VA, and WV), Corn Belt (IA,
IL, IN, MO, and OH), Delta (AR, LA, and MS), Lake States (MI, MN, and WI), Northeast (CT, DE, MA,
MD, ME, NH, NJ, NY, PN, RI, and VT), Northern Plains (KS, ND, NE, and SD), Southeast (AL, FL,
GA, and SC), and the Southern Plains (OK and TX).

5From personal communication with Douglas G. Luster, Research Leader of USDA Agricultural
Research Service, Foreign Disease Weed Science Research Unit.

6Totals depend on which fixed, start-up costs are included. Extension agents and land-grant pro-
fessors volunteered their time, which is not counted in the cost estimate. The testing labs in Beltsville,
Maryland, used equipment that had already been purchased, and USDA scientists involved in several
other research projects carried out the tests.

7A farmer with this utility function and wealth of $200,000, values an additional dollar 16 times as
much as a farmer with $400,000 and 625 times as much as a farmer with $1 million.

8Defined in “Prior Infection Probabilities” section.
9Only the 20 most recent observations (1984–2004) are included in this regression.
10Percentage change in price from year to year will depend not only on this year’s yield shocks, but

also on yield shocks that may have affected the previous year’s price. However, including previous
year yield residuals as an explanatory variable does not lead to significant changes in estimates of the
coefficients on current-year price-shock effects.

11The relevant equilibrium condition is expressed by equation (7).
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